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ABSTRACT 

High range resolution radar systems have many advantages such as target 

classification, resolution of multiple targets, accurate range measurement, target range 

profile and detection of low radar cross section (RCS) targets in clutter. High range 

resolution requires large bandwidths. Stepped frequency waveforms can achieve high 

range resolution by increasing the effective bandwidth without increasing the 

instantaneous bandwidth which would increase the hardware requirements including 

higher analog to digital (A/D) sampling rates which are limited by existing technology. 

Under today's hardware limitations, the stepped frequency waveform becomes very 

important. This thesis briefly discusses the stepped frequency radar and associated signal 

processing, it investigates the ambiguity function of the stepped frequency waveform and 

the stepped frequency radar system. Mathematical expressions of ambiguity functions are 

derived and the improvement of clutter suppression capability for the stepped frequency 

radar by rejecting initial pulses is also discussed. 
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I. INTRODUCTION 

High range resolution radar systems have many advantages such as target 

classification, resolution of multiple targets, accurate range measurement, target range 

profile and detection of low radar cross section (RCS) targets in clutter. High range 

resolution is typically achieved either by decreasing the duration of the transmitted signal 

or by modulating a transmitted signal of relatively longer duration. In either case, the 

instantaneous bandwidth of the signal goes up and thereby increases the hardware 

requirements to include higher A/D sampling rates (which are limited by existing 

technology). However, with the stepped frequency waveform, it is possible to achieve 

higher range resolutions with lower instantaneous bandwidths and lower A/D sampling 

rates. Irrespective of the waveform or compression method used, high range resolution 

requires large bandwidths. For the stepped frequency waveform, a large bandwidth is 

obtained sequentially by changing the carrier frequency in steps over several pulses instead 

of within a single pulse. This waveform potentially can be implemented in high 

performance radar systems with lower A/D sampling rates, which is one of the current 

bottlenecks in the development of radar systems. Because of the importance of the 

stepped frequency waveform, this thesis briefly discusses the stepped frequency radar, its 

associated signal processing, and analyzes it by the ambiguity function. In Chapter II the 

stepped frequency waveform and its corresponding radar system are introduced. In 



Chapter in the matched filter and the correlation definition of the ambiguity function are 

first discussed. The properties and applications of the ambiguity function are also briefly 

discussed. The mathematical expression of the auto-ambiguity function for the stepped 

frequency waveform is then derived from the definition and is verified by comparing the 

ambiguity diagram with one obtained by simulation. Finally, the mathematical expression 

of the cross-ambiguity function for the stepped frequency radar signal processor is derived 

and verified, and the improvement of the clutter suppression capability for the stepped 

frequency radar by the rejection of initial pulses is discussed. In Appendix A, the 

ambiguity functions for the single pulse, constant frequency pulse train, linear frequency 

modulated (LFM) pulse, and the discrete frequency modulated pulse are given for the 

purpose of comparison. Mathematical expressions of the ambiguity functions for these 

waveforms are derived and verified. In Appendix B, the computer programs of ambiguity 

functions for all the waveforms discussed in the thesis are listed. 



H. OPERATING PRINCIPLES OF THE STEPPED FREQUENCY RADAR 

A.       STEPPED FREQUENCY WAVEFORM 

The stepped frequency waveform can be described by a series of N coherent 

pulses, where the carrier frequency increases from pulse to pulse by a fixed increment A/ 

as shown in Figure 1. Each pulse has a fixed pulse width Ts, and the pulses are transmitted 

at a fixed pulse repetition interval (PRI). The frequency of the kth pulse is given by 

4=f0+(k-l)A/, (1) 

where f0 is the nominal carrier frequency and Af is the frequency step size. [Ref. 1, pp. 

160-161] 

The instantaneous bandwidth of this waveform is approximately equal to the 

inverse of the pulse width and is much less than the effective bandwidth. The waveform's 

effective bandwidth, denoted as Beff, is determined by the product of the number of pulses 

N, and the frequency step size A/as given below. 

Beff=NA/ (2) 

The range resolution for any waveform is dependent on the effective bandwidth of the 

waveform. The range resolution of the stepped frequency waveform is given as 

^ = lkf (3) 

where c is the speed of the light. Thus the range resolution can be made finer by increasing 

the effective bandwidth NAf. [Ref. 2, p. 234] 
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N : number of pulses     Tr : pulse repetition interval (PRI) 

Ts : pulse width Af: frequency step size 

fD : nominal carrier frequency 

Figure 1. The Stepped Frequency Waveform 



The effective bandwidth is achieved by the signal processing of the data obtained 

during the coherent processing interval (CPI), which usually is the time on target. The CPI 

is given by the product of the number of pulses N and the pulse repetition interval (PRI). 

CPI=NxPRI (4) 

B.        SYSTEM DESCRIPTION 

The block diagram of a radar which employs a stepped frequency waveform is 

shown in Figure 2. The transmitted signal in this radar is generated as in conventional 

coherent radars by mixing RF frequency (STALO) and IF frequency (COHO). However, 

the frequency step in each pulse is added by the frequency synthesizer as shown in Figure 

2. On the receiver side, a reverse operation of taking out the RF, step, and IF frequencies 

is performed. The IF amplifier serves as a matched filter to the envelope of each individual 

pulse. The output of the synchronous detector is a video signal in the form of in-phase and 

quadrature (I-Q) components. The output of the A/D is stored and organized according to 

range bins. Received signals from all N pulses in each range bin is collected. This data may 

be weighted before taking the DFT. The output of the DFT represents a finely resolved 

range bin. The size of the original range bin is cx/2. However, after DFT, the width of the 

subdivision of a finely resolved range bin is cx/2NAfr, which is equivalent to having a 

bandwidth of NAf [Ref.2, p. 236]. The unambiguous range R„ for this waveform is c/2Af. 

This will be quite short but it may not be a problem as it is applicable within the same 

range bin. For avoiding wrap around the target, R,^ should be greater than the target 

extent. 
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Figure 2.      System block diagram for the Stepped Frequency Radar 



m. ANALYSIS OF THE STEPPED FREQUENCY RADAR 
BY THE AMBIGUITY FUNCTION 

A.       INTRODUCTION TO AMBIGUITY FUNCTION 

1. Matched Filter 

The matched filter maximizes the output peak signal to noise power ratio for 

the detection of a known signal. In the presence of additive white Gaussian noise, the 

impulse response of the matched filter is the complex conjugate of the image of the 

received waveform, h(t)=s*(trt), where s(t) is the received signal, that is, it is the same as 

the received signal run backward in time starting from fixed time tr [Ref. 3, p. 261] In 

order to simplify the mathematical developement, it is customary to set tj at zero. The 

output of the matched filter is then written as 

y(t) = J s(k)h(t- X)dk = J s(X)s*(K - t)dk (5) 
—CO —oo 

2. Definition of the Ambiguity Function 

If the transmitted signal St(t) is u^e^*1, then received signal Sr(t) is given 

by u(t-TD)ej2K(fo+fdKt-TD) ^YiereTD is the unknown round trip time delay given by ^ 

and fa is the Doppler shift of the returned signal. Assuming that the radar receiver is 

matched to the transmitted signal, we obtain the output of the matched filter as 

So{T'D) =i»(t-TD)eWrf^™xu^-TDy^0^T'D)dt , (6) 

where TD is the estimate of time delay. 



/ / 
It is customary to set TD and /b equal to zero, and to define To - TD as x. The 

output of the matched filter is then 

50(T) = e-M*xJ u(t-%)u*{t)eP**dt. (7) 
—oo 

Since the interest is only in the magnitude of the matched filter output, 

neglecting the first exponential term, we obtain the output of the matched filter as 

X(x,fd) =] u(t-x)w*(t)eP#*dt (8) 
—oo 

In this form a positive x indicates a target beyond the reference delay t,,, 

and a positive fd indicates an incoming target [Ref. 4]. In the literature the term 

"Ambiguity Function" is interchangeably used for X(x/d), IX(x/d)l, and IX(x/d)l
2. In this 

thesis, the plot of IX(x/d)l
2 is called the ambiguity diagram. If the receiver filter is matched 

to the transmitted signal, IX(x/d)l
2 is termed the auto-ambiguity function, otherwise, it is 

termed the cross-ambiguity function. 

3.   Properties of the Ambiguity Function 

The function \X(z,fd)\2 has the following properties [Ref. 5, p. 412]: 

Maximum value of IZ(x,/d)l
2 = lz(0,0)l2 = (2£)2, (9) 

\X(-x,-fä)\
2 = \X(x,fd)\

2, (10) 

IZ(x,0)l2 = I J u(t-x)u*{t)dt\2, (11) 
—oo 

\X{Q,fd)\
2 = I J u2(t)e^dt\2, (12) 



H^ \X(x,fä)\2dxdfd = (2Ef . (13) 

The first equation given above, Equation 9, states that the maximum value of 

the ambiguity function occurs at the origin and its value is (2E)2, where E is the energy 

contained in the echo signal. Equation 10 shows that the ambiguity function is symmetric 

about the origin. Equation 11 describes that the ambiguity function along the time delay 

axis is the auto-correlation function of the complex envelope of the transmitted signal. 

Equation 12 shows that along the frequency shift axis the ambiguity function is 

proportional to the spectrum ofu2(t). Equation 13 states that the total volume under 

the ambiguity function is a constant equal to (2E)2. 

The ideal ambiguity diagram consists of a single peak of infinitesimal thickness 

at the origin and is zero everywhere else, as shown in Figure 3. The single spike eliminates 

any ambiguities, and its infinitesimal thickness at the origin permits the frequency and the 

echo delay time to be determined simultaneously to as high a degree of accuracy as 

desired. It also permits the resolution of two targets no matter how close together they are 

on the ambiguity diagram. Because of two restrictions the ideal ambiguity function is not 

possible; first, the maximum height of the ambiguity function must be equal to (2E)2, 

which is limited, and second, the total area under the ambiguity function  must be finite 

and equal to (2E)2. A reasonable approximation to the ideal ambiguity function might 

appear as shown in Figure 4. This waveform does not result in ambiguity since there is 

only one peak, but the single peak might be too broad to satisfy the requirements of 

accuracy and resolution. If the peak is made too narrow, the requirement for a constant 



Figure 3.   Ideal ambiguity diagram "after Ref. [5]." 

Figure 4. The approximation to the ideal ambiguity diagram "after Ref. [5]." 
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volume might cause peaks to form at regions of the ambiguity diagram other than the 

origin and give rise to ambiguities. Thus the requirements for accuracy and ambiguity may 

not always be simultaneously possible to satisfy. [Ref. 5, pp. 412-413] 

The particular waveform transmitted by a radar is chosen to satisfy the 

requirements for (1) detection, (2) measurement accuracy, (3) resolution, (4) ambiguity, 

and (5) clutter rejection. The ambiguity diagram may be used to assess qualitatively how 

well a waveform can achieve these requirements. The maximum value of the ambiguity 

function is an indication of the radar's detection capabilities. Since the ambiguity diagram 

is often normalized so that the maximum value is equal to one, the ambiguity diagram is 

seldom used to assess the detection capabilities of the waveform. The accuracy with which 

the range and the velocity can be measured by a particular waveform depends on the 

width of the spike, centered at IX(0,0)l2, along the time and frequency axes. The 

resolution is also related to the width of the central spike, but in order to resolve two 

closely located targets the central spike must be isolated. It cannot have any high peaks 

nearby that might mask another target close to the desired target. A waveform that yields 

good resolution will also yield good accuracy, but the reverse is not always true. The 

presence of additional spikes can lead to ambiguity in the measurement of target 

parameters. An ambiguity measurement is one in which there is more than one choice 

available for the correct value of a parameter, but only one choice is appropriate. Thus the 

correct value is uncertain. The ambiguity diagram may be used to determine the ability of a 

waveform to reject clutter. If the transmitted waveform is to have good clutter-rejection 

11 



properties, the ambiguity diagram should have little or no response in the regions of clutter 

[Ref. 5, pp. 418-420]. Some examples of the ambiguity function are shown in Appendix A 

which includes single pulse, pulse train, linear frequency modulation pulse, and stepped 

frequency modulation pulse. 

B.       DERIVATION OF THE AUTO-AMBIGUITY FUNCTION FOR THE 

STEPPED FREQUENCY RADAR 

In order to derive the auto-ambiguity function, according to the definition, 

Equation 8, we need the expression of the complex envelope of the transmitted signal. The 

transmitted signal of the stepped frequency radar consisting of a train of N pulses and 

changing carrier frequency from pulse to pulse by fixed increment A/ is shown in Figure 

1. It is mathematically represented as 

St(t) = at X1 u(t - nTr)eJ2nV°+nW, (14) 

where  u(t-nTr) = 1, if riTr < t < nTr + Ts, 
0, elsewhere, (15) 

fstep = "A/ , n = 0,...,N-1 ,and 

/0 =fcoho +fstalo, 

fcoho '■ the frequency of the stable coherent oscillator , 
fstaio '• the frequency of the stable local oscillator, 
fstep : step frequency, 
A/ : the frequency step size, 
iV : the number of the pulse sequences, 
TV : pulse repetition interval (PRI), 
Ts : pulse width, 
at : the amplitude of the transmitted signal. 

12 



The transmitted signal can be rewritten as 

St(t) = at X1 u{t-nTr)e'2m^ 
.«=0 

,finfot 

= atU(t)eW°t (16) 
AM 

where   U(t) = 'L u(t-nTr)e
fl'K"^i   is the complex envelope of the pulse sequence. The 

signal received due to a discrete scatterer can be written as 

Sr(t) = ör^-xJeW»«^ (17) 

where 

ar : the amplitude constant, 
x   : the round trip time between the radar and the scatterer, 
fd : the Doppler frequency shift due to the normal relative velocity between the 

radar and the scatterer, 

1       c > (18) 

and 
/•       2vr/. 
Id = —J0. (19) 

Substituting   the   complex   envelope, U(t) , of  the   transmitted   signal  into 

Equation 8, we obtain the auto-ambiguity function of the stepped frequency radar as 

W.WE «(r-^-O^Vi1 u><,-*r)f*-*xj«**.        (20) 

Changing variable t-nTr by t , we change the above equation to 

N-1N-1 
X(z,fd) = XX e-J2™2^ xeflm,n^Tr x e-

j270n^ x e
ft^nTr 

m=0«=0 

xJ u*(t )u(t -(m-n)-%\eWm-nW efl-nfät df . (21) 

13 



Defining the round trip time T in terms of integer and fraction parts 

x = (p + y)Tr, (22) 

where p is an integer, y is the fraction, and 0 < y< 1, we obtain the ambiguity function as 

X(x,fd) = (Ts - iTr) x e»rf«W x e^W x ^^wr^Tr) 

min(W-lJV-l+/>) 

n=max (0j>) 

for 0<Y<£, (23-1) 

(J  + (y- l)T ) V £MHP+l)4/)(2YKy-l)7V) X sinrcfcHp+l)Aß(7VfCH)7V) 
v       u     ' r> jc(^-(p+i)40(rs+(r-i)rr) 

min(JV-lJV+p) 
Xe72rc(p+l)iVecx        2 eßm<fcr{p+l)t4)Tr x e-Jlm6fi 

n=max (0,p+l) 

for l-ff<y<l,and (23-2) 

= 0, elsewhere. (23-3) 

After simplifying the summation term and taking the absolute value, we obtain the 

expression for the auto-ambiguity function as 

\X(%Jd)\ - (Ts -iTr) X \-^-^-—\ x I    ^^^    I , 

for0<y<£, (24-1) 
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\Y(T f\\-(T    ■ '-     i^'-l sm7tfe-(p+l)A/)(:7VKY-l)rr) II sini^-(2^-Hyfl)/y>(JV-lj>+ll)rr 

lu^-Cp+^^cn-Kr-Drr) smntfj-Vp+nimTr 

forl-g<y<l, (24-2) 

= 0, elsewhere. (24-3) 

The auto-ambiguity function along the Doppler frequency shift axis can be 

expressed as 

iKAttl-T.xligilxläS^I. (25) 

The auto-ambiguity function along the time delay axis can be expressed as 

\Y(T ml -(T -vr\*\±]±pM£^Ed\ v\™*-Pp*t>m^pi)Tri 

forO<y<£, (26-1) 

(^ + 17     i^rjXI   Jt(_(p+i)4/)(rj+(r.1)rr)   IX"        sin7C(-(2p+nl)4^rr ' 

for l-ff<y<l,and (26-2) 

= 0, elsewhere. (26-3) 

One can easily show that the auto-ambiguity function of the stepped frequency 

radar will become the ambiguity function of the pulse radar (shown in Appendix A) by 

setting A/ to zero. The ambiguity diagram, that is the plot of IX(x/d)l
2 for the stepped 

frequency waveform for the following parameters: number of pulses N equals to 4, 

15 



duty-cycle equals 0.2, and frequency step size A/equals 2PRF is plotted in Figure 5. This 

plot somewhat looks like the ambiguity function of the pulse train rotated at an angle. The 

contour plot of the ambiguity function is shown in Figure 6. Plots of a cut along the 

frequency axis for x=0 and a cut along the time delay axis for/d=0 are shown in Figures 7 

and 8.  It can be seen from Figure 7 that the spikes appear at multiples of PRF in the 

frequency axis.  The first null for each spike is l/(NTr)  away from the center of the 

spike. Therefore, each spike has null  to null width of 2/(NTr) along the frequency axis. 

Amplitudes of those spikes vary as a SINC function. Zero amplitude will appear at 1/TS. 

From Figure 8, there is 2N-1 spikes along the time delay axis. From Eq. 26-1, it is easy 

to show that the first null for the central spike (p=0) occurrs at l/(NAf). Accordingly, if 

l/(NAf) is less than pulse width Ts, the stepped frequency radar will have better range 

resolution than the pulse radar. Plots of cut along the delay axis with different frequency 

step Afs are presented in Figure 9. The larger the radar's frequency step, the better the 

resolution of the radar. 
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frequency (PRF) -10    -4 
delay (PRI) 

Figure 5.    Auto-ambiguity Diagram of the Stepped Frequency Radar, 
Pulse Number N=4, Duty-cycle=0.2, A/=2PRF. 
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-1 0 
delay (PRI) 

Figure 6.   Contour Plot of the Auto-ambiguity Diagram for the Stepped 
Frequency Radar, Pulse Number N=4, Duty-cycle=0.2 ,A/=2PRF. 
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Figure 7.   Plot of Cut along the Frequency Axis for x = 0 of the Auto-ambiguity Function 
for the Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2 , A/= 
2PRF. 
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'igure 8. Plot of Cut along the Time Axis for f=0 of the Auto-ambiguity Function for the 
Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2, A/=2PRF. 
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Figure 9.   Plot of Cut along Time Axis for f=0 of the Auto-ambiguity Function for 
the Stepped Frequency Radar, Pulse Number N=4, Duty-cycle=0.2, 
A/=[0,2,4,8]PRF. 
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C.       DERIVATION OF THE CROSS-AMBIGUITY FUNCTION FOR THE 

STEPPED FREQUENCY RADAR 

In this section the mathematical expression of the ambiguity function for the stepped 

frequency radar receiver and processor as shown in Figure 2 are derived. Since the filter 

used in this system is only matched to the individual pulse instead of matched to the 

transmitted signal which is composed of N pulses, the ambiguity function of this stepped 

frequency radar processor is called the cross-ambiguity function. The stepped frequency 

radar can be mathematically modeled as shown ih Figure 10. The transmitted and received 

signals were defined in Equation 16 and Equation 17 respectively. The received signal is 

mixed with a local oscillator, stepped frequency synthesizer, and a coherent oscillator. The 

stepped frequency synthesizer is synchronized so that the transmitter and receiver are on 

the same frequency step. As a result, multiple time around echoes will have frequencies 

which vary by multiples of frequency step size A/. The signal is then passed through a filter 

which is matched to a single pulse envelope. The output of the pulse-envelope matched 

filter is sampled and the samples undergo the discrete-time signal processing shown in 

Figure 10. 

The output of the stepped frequency synthesizer used in the receiver is defined as 

where 

SsteP(t) = X \i{t-nTr)e-^n®\ (27) 
B=0 

\i{t-nTr) = 1,      if nTr < t < (n + l)Tr, and 
0,     elsewhere. (28) 
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The output of the matched filter, z(t), can be derived by taking the convolution of 

the impulse response of the matched filter, h(t), and the received signal at the input of the 

matched filter. The received signal at the input of the matched filter can be defined as 

Si(t) = e-W°{ x SsteP (t) x Sr(t). (29) 

The output of the matched filter can then be expressed as 

©o 

z(fo) = J Si(T\)xh*(to-T])ch] 

= J e-P*fn x fz nCn - mT^e-J270"^ ) 

x[ar 2
1 u(r\ -x -/iTr)eWatfH*4l>(n<)}xhm(t0-T\)dr\. (30) 

The above equation can be rewritten as 

z(t0) = ar J e-W« xe^*^ xjxh*(t0 -r\)dx\, (31) 
—oo 

where 

J = Z \i(y\-mTr)e-j2ltm^xZ w(r| - x -tär)eP1*n6K*je>, (32) 

and i is defined in Equation 22. 
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If each pulse of the received signal is assumed to fall within the same pulse of 

the stepped frequency signal no matter how x varies, then / can be expressed as 

roin(N-l-pW-l) 

J = e-flKKm        j.        u{r\-x-nTr)e-^^, (33) 
n=max (0,-p) 

where    K=p, if pTr<x<(p+l)Tr-Ts, 
=p + l, if (p + l)Tr-Ts<x<(p+\)Tr. (34) 

Substituting Equation 33 into Equation 31, we obtain the output of the matched 

filter as 

min(/V-l-p,/V-l) 

X        «ft - x - nTr)e-&oU*c x h* (t0 -T\)dr\. (35) 
n=max (0,-p) 

Letting ^ = T] - ?o, we rewrite the output of the matched filter as 

z(t0) = are-j2n(fo+f^ x e^fo-KA^o 

xj e j2JtKr-KA/)§ 
min(W-l-pJV-l) 

2        U(£ + *O-T-/I7V) 
n=max (0,-p) 

xh'i-ifö 

= are-J2K^+^xeWAxJ e^»*X^-(T-/0),I)X/I*(-£)d£, (36) 
-oo 

where fm =fd - KA/ , (37) 

min(AM-p,/V-l) 
V(t,x)=       X        u(t-nTr)e-J27Zn^. (38) 

n=max(0,-p) 
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It is customary to set t0 to 0 for the computation of the ambiguity function and 

neglect the first exponential term, since we are only interested in the magnitude of the 

matched filter outputs. Redefining the output of the matched filter 2(10) as X(x,fm), we 

obtain the output of the matched filter as 

X(z,fm) = J e^»' x V(t - x, x) x h*{-t)dt. (39) 
—00 

According to the definition of the ambiguity function in Equation 8, we treat fm as 

the frequency shift of signal at the input of the matched filter. This frequency shift consists 

of the Doppler shift and the frequency changes due to the stepped frequency waveform. 

V(t,x) is then the envelope of signal at the input of the matched filter. Thus X(x/m) 

becomes the cross-ambiguity function of the stepped frequency radar without the 

processor. In this form a positive x indicates a target beyond the reference delay t,,. 

In the rest of the section, the ambiguity function is extended to include the signal 

processor. The matched filter output is sampled at instants t^nTs and the samples 

undergo discrete-time signal processing. The sample rate, 1/TS, is greater than or 

equal to the bandwidth of the pulse envelope u(t). Further, the pulse repetition interval 

(PRI), Tr, is an integer multiple, k, of Ts. The sample stream for all the pulses is sorted 

into k parallel processing streams termed ambiguous range bins. Processing within each 

range bin utilizes only samples from time instants separated by integer multiples of Tr. 

[Ref. 6] 
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The ith sample for range bin k can be defined as 

zk(i) = z(kTs + iTr). (40) 

These samples from the matched filter output which are associated with a range 

bin are processed together by a discrete Fourier transformation (DFT) processor. A 

Hamming window  is applied before executing the DFT to reduce frequency sidelobes. 

Out of N samples in a range bin, the first I samples are rejected to allow for the settling of 

transients due to range ambiguous clutter [Ref. 7]. DFT is taken as the last M weighted 

samples of each range bin as given below 

Z(k,l) = X1 w(i)e-j2niMzk(i+r), (41) 
i=0 

where 

k   :  range bin index, 
/    : Doppler filter index, 
M :  the number of samples that DFT processed, and M < N- \p\ , 

i    : sample index, i=0,l,...,M-l, 
w   : the window coefficients, 
/    : the number of samples that will be rejected initially. 

Substituting Equations 35 and 40 into Equation 41, we obtain the /th output of the 

DFT for range bin k as 

Z(k,l) = are-J2n^+^x 

00 min(A'-l-p,/V-l) 
J eß^r\        2        u(y\-x-nT&-&***xh*(kTs-i\)dr\, (42) 

-«> n=max(0,-/?) 

where 
M-l _ ./ 

ä;W = 2 w{i)e-fl^h*(t+(i+DTr). (43) 
t=0 
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/z*,(t) is the impulse response of the radar receiver processor which includes the 

pulse envelope matched filter, weighting function and Doppler processor. 

Equation 42 has the same form that Equation 35 does. So after changing variables, 

setting kTs equal to zero and neglecting the first exponential term, the /th output of DFT 

can be written as 

Xi(x,fm) =1 eW»<v(t-x,x)hU-t)dt, (44) 

The above equation defines the cross-ambiguity function associated with the 

mathematical model of the stepped frequency radar processor as illustrated in Figure 10. 

The subscript / indicates that a distinct ambiguity function is defined for each Doppler 

filter. 

For the received pulse to be matched to the transmitted pulse, h(t) should be equal 

to M-(-t). From Equations 37, 42, and 43, after simplifying, the ambiguity function for /th 

DFT can be expressed as 

min(A'-l-/+pA-l-/rM-l) „  ., 
Xi(x,fd)= Z H(i)x^2n5x^,,(/+i-P^x^'t^,^(;+')r' 

x(T - vT ^ x eW<r-Kto(r**irr) x ^Wd^mTr-fTr) 

for0<y<£, (45-1) 
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as 

Xfafd) = 2 w(f) x e"y2mM x g^tC^W x efl*(fä-K4f)(i+r)Tr 
p=max (0^+1-7) 

X(T + fy- 1YT 1 X ^Mr-KA0(r,+(T-l)rr) x sin7^r-KA/)(7>(-H)7V) 
^   *     "        '   r>     c 7t(k-K4/)(7>(Y-l)7V)    ' 

forl-^<y<l, (45-2) 

= 0, elsewhere. (45-3) 

Taking the absolute value of the above equation, we obtain the ambiguity function 

\Xi(X,fd)\ - (Ts-iTr) X I   «f^tMr^r)   |X 

min(W-l-/+/>,/V-l-/,M-l) „     . 
2 M<0 x e-^ x e^i-V^MiTr I ^ 

f=max (0,p-/) 

for0<y<£, (46-1) 

YT   i fv    nrV'l™*(fä-(P+lM(Ts+(y-l)Tr)I (j, + (Y   i)jr)xi ^^^^^ ix 

min(N-I+pJ</-IM-l) „  .; 
X w(0 x e-3*2*1* x ePxVd-ep+rrtWVTr \ t 

s=max (0,p+l-/) 

forl-|i<Y<l, (46-2) 

= 0, elsewhere. (46-3) 

The  above equation becomes  the cross-ambiguity function  of the  stepped 

frequency radar processor. The cross-ambiguity function can describe the auto-ambiguity 
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function of the stepped frequency radar by setting the Doppler filter index / to zero and 

assuming a uniform window, w(i)=l, setting / to zero, and setting the number of 

transmitted pulses, N, equal to the number of samples processed, M. Under these 

assumptions and after simplifying, the ambiguity function becomes 

forO<Y<F> (47-1) 

(T  i (v   \\T\vAsinn<fd-(p+im(rMy-i)Tr)i    ismWcrC^nim(N-\p+i\)TrI 

forl-g<Y<l, (47-2) 

= 0, elsewhere. (47-3) 

The above equation is exactly the same as the expression of the auto-ambiguity 

function in Equation 24. If we let the frequency step, A/, be zero, it is easy to prove that 

Equation 38 becomes the ambiguity function of a pulse train as expressed in Appendix A 

Equation. A. 13. 

The ambiguity diagram of the 0th, /=0, Doppler filter of the stepped frequency 

radar with a Hamming window in the Doppler processor is illustrated in Figure 11. Figures 

12 and 13 are plots of cut along the frequency axis and delay axis respectively. From the 

comparison of Figures 12 and 13 with Figures 7 and 8 which are the cut plots of the 
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0.12 

frequency (prf) -10    -4 
delay (pri) 

Figure 11. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number 
N=4, Number of Pulses Processed M=4, Duty-cycle=0.2, A/ =2PRF, 1=0, /=0, 
and with Hamming Window 
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0 . 0 2  
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frequency    (prf) 

igure 12. Plot of Cut along Frequency Axis for T = 0 of the Cross-ambiguity Function 
for the Stepped Frequency Radar, Pulse Number N=4, Number of Pulses 
Processed M=4, Duty cycle=0.2, A/=2PRF, 1=0, 7=0, and with Hamming 
Window 

7igure 13. Plot of Cut along Time Axis for f=0 of the Cross-ambiguity Function for the 
Stepped Frequency Radar, Pulse Number N=4, Number of Pulses Processed 

M=4, Duty-cycle=0.2 ,A/ =2PRF, 1=0, and 7=0, and with Hamming Window 
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auto-ambiguity diagram for the stepped frequency radar without window function, 

one can find that window functions which are often used in radar processors will decrease 

the amplitude of each spike and spread the width of it in return for reducing the sidelobes 

of each spike. The decrease in amplitude will reduce the detection capability and the 

spread of the width of the spike will cause poor accuracy and resolution. On the other 

hand, reducing the sidelobe of the spike will enhance the detection of small targets close to 

the large target. Figure 14 shows the bank of Doppler filters within a DFT processor . 

This figure indicates that the ambiguity function for the /th Doppler filter is the shifted 

version, along the frequency axis, of the ambiguity function for the Oth Doppler filter. The 

effect of decay for different Doppler filters is caused by the window function. 

The improvement in clutter suppression capability that is achieved using pulse 

Doppler processing, including the use of rejecting I pulses for initialization, is 

demonstrated in Figures 15 thru 28 [Ref. 7]. The figures were drawn using the MATLAB 

computer program which calculates the ambiguity function defined by Equation 47. 

Figures 15 thru 22 show the clutter suppression capability for the pulse radar, and Figures 

23 thru 28 show the clutter suppression capability for the stepped frequency radar. In all 

these plots, the sample step of time delay axis is 4 PRI. Therefore only envelopes of the 

ambiguity diagram are shown in the time delay axis. In the frequency shift axis, there are 

many spikes occurring at the position of multiples of PRF, but only a single spike is shown 

in the plots. The Hamming window is used in all of these plots. In Figures 15, 17, 19, 21, 

23, 25, and 28, the number of transmitted  pulses and  processed pulses are equal, 
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Figure 14. Plot of Cut along Frequency Axis for x=0 of the Cross-ambiguity Function 
for the Stepped Frequency Radar, Pulse Number N=4, Number of Pulses 

Processed M=4, Duty cycle=0.2, A/=2PRF, 1=0, /=[0,1,2,3], and with 
Hamming Window 
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N=M=100, and the number of initial pulses rejected, I, is set to zero. In Figures 16, 18, 

20, 22, 24, 26, and 28, the number of transmitted pulses, N, is increased to 150, and I is 

set to 50. From Figures 15 thru 18, in the case of the pulse radar, the use of initial pulse 

rejection leads to an ambiguity function which, along the delay axis, is a cross correlation 

of envelope functions of unequal length. This phenomenon is not clear for the stepped 

frequency radar due to the different pulse frequencies as shown in Figures 23 and 24. 

Comparing Figures 19, 21, 25, and 27 with Figures 20, 22, 26, and 28, respectively, Hie 

improvement in clutter suppression capability when utilizing initial pulse rejection is clearly 

demonstrated. Comparison of Figures 19 and 25 with Figures 20 and 26 shows that the 

clutter in the 0 to 50 PRI range will be rejected by the use of an initial pulse rejection for a 

0.1 PRF Doppler mismatch. Figures 21 and 27 show that, without initial pulse rejection, 

the capability of Doppler processing to suppress clutter is severely degraded when placing 

30 PRIs of delay (from the matched delay) when compared to the cases shown in Figures 

22 and 28. [Ref. 6] 
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frequency (prf) -0.04     -200 
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delay (pri) 

Figure 15.   Cross-ambiguity Diagram of the Pulse Radar, Pulse Number N=100, 
Number of Pulses Processed M=100, Duty-cycle=0.2, A/ =0,1=0,7=0, 
and with Hamming Window 
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frequency (prf) -0.04    -200 

200 

delay (pri) 

Figure 16.   Cross-ambiguity Diagram of the Pulse Radar, Pulse Number N=150, 
Number of Pulses Processed M=100, Duty-cycle=0.2, A/ =0,1=50, /=0, 
and with Hamming Window. 
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Figure 17. Plot of Cut along Time Axis for f=0 of the Cross-ambiguity Function for the 
Pulse Radar, Pulse Number N=100, Number of Pulses Processed M=100, 

Duty cycle=0.2, A/= 0,1=0, 1=0, and with Hamming Window. 
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igure 18.   Plot of Cut along Time Axis for f=0 of the Cross-ambiguity Function for the 
Pulse Radar, Pulse Number N=150, Number of Pulses Processed M=100, 

Duty-cycle=0.2, A/ =0,1=50, /=0, and with Hamming Window 
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'igure 19. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity 
Function for the Pulse Radar, Pulse Number N=100, Number of Pulses 
Processed M=100, Duty-cycle=0.2, A/= 0,1=0,1=0, and with Hamming 
Window 

o o 

Figure 20. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity 
Function for the Pulse Radar, Pulse Number N=150, Number of Pulses 
Processed M=100, Duty-cycle=0.2, A/=0,1=50, 7=0, and with Hamming 
Window. 
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Figure 21. Plot of Cut Parallel to Frequency Axis for x =30PRI of the Cross-ambiguity 
Function for thePulse Radar, Pulse Number N=100, Number of Pulses 
Processed M=100, Duty-cycle=0.2, A/= 0,1=0, 7=0, and with Hamming 
Window 

Figure 22. Plot of Cut Parallel to Frequency Axis for x =30PRI of the Cross-ambiguity 
Function for the PulseRadar, Pulse Number N=150, Number of Pulses 
Processed M=100, Duty-cycle=0.2, A/=0,1=50, 7=0, and with Hamming 
Window. 
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Figure 23. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number 
N=100, Number of Pulses Processed M=100, Duty-cycle=0.2 , A/ =0.1PRF, 
1=0, /=0, and with Hamming Window 
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Figure 24. Cross-ambiguity Diagram of the Stepped Frequency Radar, Pulse Number 
N=150, Number of Pulses Processed M=100, Duty-cycle=0.2 , A/ =0.1PRF, 
1=50, /=0, and with Hamming Window 
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Figure 25. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity 
Function for the Stepped Frequency Radar, Pulse Number N=100, Number of 
Pulses Processed M=100, Duty-cycle=0.2, A/=0.1PRF, 1=0, 7=0, and with 
Hamming Window 
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Figure 26. Plot of Cut Parallel to Time Axis for f=0.02PRF of the Cross-ambiguity 
Function for the Stepped Frequency Radar, Pulse Number N=150, Number of 
Pulses Processed M=100, Duty-cycle=0.2 ,A/=0.1PRF, 1=50, 7=0, and with 
Hamming Window. 
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7igure 27. Plot of Cut Parallel to Frequency Axis for t=30PRI of the Cross-ambiguity 
Function for the Stepped Frequency Radar, Pulse Number N=100, Number of 
Pulses Processed M=100, Duty-cycle=0.2 , A/=0.1PRF, 1=0, 7=0, and with 
Hamming Window. 

iugure 28. Plot of Cut Parallel to Frequency Axis for x=30PRI of the Cross-ambiguity 
Function for the Stepped Frequency Radar, Pulse Number N=150, Number of 
Pulses Processed M=100, Duty-cycle=0.2, A/=0.1PRF, 1=50, 7=0, and with 
Hamming Window. 
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IV. CONCLUSIONS 

This thesis investigates the ambiguity functions of the stepped frequency waveform 

and the stepped frequency radar system. The stepped frequency waveform achieves a high 

range resolution by coherently processing the returns from N pulses, each having a 

different carrier frequency that changes by a fixed amount from pulse to pulse. The 

mathematical expression of the auto-ambiguity function for the stepped frequency 

waveform is derived from the definition. The auto-ambiguity function is defined as the 

correlation of the complex envelope of the transmitted signal and the Doppler frequency 

shifted version of the complex conjugate of the transmitted signal. The 3D plot of the 

auto-ambiguity function shown in Figure 5 is spiky like that of a constant frequency pulse 

train ( shown in Figure A.5) and is tilted at an angle. Along the time delay axis, the 

null-to-null width of each spike is 2/NA/ as compared to 2/x for the constant frequency 

pulse train, thereby making it possible to decrease the width by increasing NA/ without 

increasing its instantaneous bandwidth. However, for the constant frequency pulse train, 

high resolution can be achieved by decreasing the pulse width and, thereby, increasing the 

instantaneous bandwidth. On the other hand, the null-to-null spike width of the stepped 

frequency waveform along the frequency axis is equal to 2/(NxPRI) which is the same as 

for the constant frequency pulse train. Thus frequency resolution is not improved by the 

stepped frequency waveform. 
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The mathematical expression of the cross-ambiguity function for the high PRF 

stepped frequency radar system including its receiver and signal processor is also derived. 

This mathematical expression is obtained from the output of the Doppler processor and a 

distinct ambiguity function is defined for each Doppler processing filter. If weighting is 

ignored, the cross-ambiguity function of the Oth Doppler filter reduces to the 

auto-ambiguity function of the stepped frequency waveform derived from the traditional 

definition. Ambiguity functions of other Doppler filters are shifted versions of the 

auto-ambiguity function along the frequency axis. The mathematical expression has been 

verified by comparing the ambiguity diagram obtained by simulation which performs the 

correlation method. 

The improvement of the clutter suppression capability for the stepped frequency 

radar system by rejecting initial pulses is also proven. The strong clutter returns from close 

range can be suppressed by rejecting some initial pulses, thereby reducing the interference 

from the region. Four types of basic waveforms are also discussed in the appendix for the 

purpose of comparison. These are single pulse, periodic constant frequency pulse train, 

linear frequency modulated pulse, and discrete frequency modulated pulse. The 

mathematical expressions of ambiguity functions for these waveforms are derived and 

have been also verified by simulation. 
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APPENDIX A.    EXAMPLES OF THE AMBIGUITY FUNCTION FOR THE 

BASIC WAVEFORMS 

In this section the ambiguity functions of commonly used radar signals such as 

single pulse, constant frequency pulse train, linear frequency modulated pulse, and discrete 

frequency modulated pulse are discussed. The mathematical expression of the ambiguity 

function for these waveforms are derived and verified by comparing with the ambiguity 

diagram obtained from the simulation. 

1. Single Pulse of the Sine Wave 

The single pulse of the sine wave can be defined as 

St(t) = u(t)eW°t , (A.1) 

where u(t) is the complex envelope of the signal, it is defined as 

u(t) = l, ifO<t<Ts, 
= 0,       elsewhere, and (A.2) 

Ts is the pulse width. 

The ambiguity function of the single pulse can be expressed as 

X(z,fd) = J u(t- %)u*(t)eWätdt 
—oo 

T 

= (rs-^)x^Mx^,       forO<x<T„ (A.3-1) 

X(z,fd) = (T, + x) x ertäVs«) x Ägggä,       for -Ts < x < 0,       (A.3-2) 

X(x,fd)=0, elsewhere. (A.3-3) 

47 



The absolute value of the ambiguity function of the single pulse can be 

expressed as 

^,fä)\ = (Ts-z)x\^^\,   forO<T<r„ (A4-1) 

\X(z,fä)\=(Ts+x)x\^^\,    for-Ts<z<0, (A4-2) 

\X(x,fd)\=0, elsewhere. (A4-3) 

The ambiguity function along the Doppler frequency shift axis, T=0, 

becomes 

IW*)l=r,xl=gjpl (A.5) 

The ambiguity function along the time delay axis,/d=0, becomes 

IX(x, 0) I = Ts - x , for 0 < x < Ts, (A.6-1) 

= T, + x , for -Ts < T < 0, (A.6-2) 

= 0, elsewhere. (A.6-3) 

The ambiguity diagram, IX(x/d)P, of the single pulse is shown in Figure 

A.l, the contour plot is shown in Figure A.2, and plots of cut along the frequency axis for 

x=0 and time delay axis for /d=0 are shown in Figure A.3 and Figure A.4. The plot for 

zero time delay is the square of the spectrum of a rectangular pulse which is the square of 

the absolute value of the SINC function. The plot for zero frequency shift represents the 

magnitude square of the auto-correlation function of a rectangular pulse. 
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frequency (1 /pulse-width) -4    -1 
delay (pulse-width) 

Figure A. 1.   Ambiguity Diagram of A Single Pulse, Pulse Width=l. 
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-0.8       -0.6       -0.4       -0.2 0 0.2 
delay (pulse-width) 

0.4        0.6        0.8 

Figure A.2.   Contour Plot of the Ambiguity Diagram of A Single Pulse, Pulse Width=l. 
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A Single Pulse, Pulse Width=l. 

1 

0 . < L 

0 . ! L 

o . ■ r 

0 . ( 

I 
0 . ! 

0 . - 

o . : 

L 

i. 

o . : 1 /                                                                    \ 

o . ■ L x                                                                                        ^\ 

0 
- 1 -0.5                             0                               0.5                             1 

delay   (pu1se-width) 
Figure A.4.    Plot of Cut along Time Axis for f=0 of the Ambiguity Function for 

A Single Pulse, Pulse Width=l. 
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2. Constant Frequency Pulse Train 

Constant frequency pulse train of N pulses can be defined as 

St(t) = E [i(t - nTr)eJ2^t, (A.7) 
n=0 

where |J.(t) , the complex envelope of the single pulse of transmitted signal, is defined as 

\i(t-nTr) = l, if nTr<t<nTr + Ts , 
0, elsewhere, (A. 8) 

where 

N : the number of pulses, 
Tr : pulse repetition interval (PRI), 
fo : carrier frequency. 

The ambiguity function of periodic pulse train can be derived as 

X(x,fd) = J21 ]i{t-nTr-%) Z1 \i*{t-mTr)e^"tdt (A.9) 
-oon=0 m=0 

After changing variable, we obtain the ambiguity function as 

X(x,fd)=I, X e^"nTr J \i{t)\x*{t-{m-n)Tr-x)eiz^tdt (A. 10) 

Now we define the round trip time in terms of integer and fraction parts 

% = (p+i)Tr (A.11) 

where p is integer ,y is the fraction, and 0 < y < 1. 
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After substituting Equation A. 11 in Equation A. 10 and simplifying , we 

obtain the expression for the ambiguity function as 

™ w IT -*n- \   mm (iV-1 jV-l+p) 
X(x,fd) = (Ts-iTr)xe^^)x^f^r)x      X       tP***' , 

for 0<y<£, (A. 12-1) 

= (T, + (y- l)Jr) x ei>W«r-Wr) x "jy^x"^1'^' e^A 
%(^+(Y-i)^)      „=max(0,p+l) 

for l-£<y<l, (A.12-2) 

= 0, elsewhere. (A. 12-3) 

We can now obtain the ambiguity function as the following equation after 

simplifying the summation term and taking the absolute value. 

W(Tf\\-(T       VT W I ^^(TrjTr) II sin7&(iV-lpl)7V | 
\X(x,fa)\ - (Ts -iTr) x I ^(r^r) I x I    a^    I , 

for 0<y<£, (A13-1) 

\Y(T f\\-(T j.fv     i NT N w IJJmfcffV+fr-Dr,)| w |*Mtfd(N-\p+l\)Tr | 
\X(z,fd)\ - (J, + (y- l)Tr) x I wMT-VTr) 'x'—S^TV—'' 

for   l-£<y<l, (A13-2) 

\X(x,fä)\=Q, elsewhere. (A13-3) 
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The ambiguity function along the frequency axis, i.e., x = 0, can be 

expressed as 

lx(0A)Ur,xl^l|xl=^l. (A.14) 

The ambiguity function along the time delay axis, i.e., fd = 0, is expressed 

\X(x,0)\ = (N-\p\)(Ts-iTr), 

as 

for0<y<£, (A.15-1) 

= (N-\p + l\)((y-l)Tr + Ts), 
i _ forl-£<y<l, (A.15-2) 

= 0, elsewhere. (A. 15-3) 

The ambiguity diagram of the pulse radar according to Equation A. 13 is shown in 

Figure A.5 and the contour of the ambiguity diagram is shown in Figure A.6. Plots of cut 

along frequency axis for x=0 and cut along time delay axis for/d=0 are shown in Figure 

A.7 and A.8. From Equation A.14 and Figure A.7, spikes appear at frequencies which are 

multiples of PRF. The first null for each spike is l/NTr away from the center of the spike. 

Therefore, each spike has the null to null width of 2/NTr in the frequency axis. Amplitudes 

of those spikes varies as a SINC function. Zero amplitude will appear at 1/TS. From 

Equation A. 15 and Figure A.8, it is seen that there are 2N-1 spikes along the time delay 

axis each of which has the width of 2Ts. The plot of cut of the ambiguity function at zero 

frequency shift represents the magnitude square of the auto-correlation function of a pulse 

train. 
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frequency (1/pulse-width) 
delay (pulse-width) 

Figure A.5.   Ambiguity Diagram of the Pulse Radar, Number of Pulses N=4, 
Duty-cycle=0.2. 
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-1 0 1 
delay (pulse-width) 

Figure A.6.   Contour Plot of the Ambiguity Diagram for the Pulse Radar, Number of 
Pulses N=4, Duty-cycle=0.2. 
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Figure A. 8.    Plot of Cut along Time Axis for f=0 of the Ambiguity Function for the Pulse 
Radar, Number of Pulses N=4, Duty-cycle=0.2. 
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3. Linear Frequency Modulated Pulse 

Linear frequency modulated pulse can be mathematically represented as 

St(t) = u(t)ej2<f^iil2) 

= [M(?)^2]<?w°r, (A. 16) 

where u(t) was defined in Equation A. 2 and fi is the rate of frequency change. The 

ambiguity function of the linear frequency modulated pulse can be written as 

X{%,fd) = J u{t-z)e^t-^2u*{t)e-^2e}'1^tdt 
—oo 

=] u(t- x)u* (fye^^dt. (A. 17) 
—oo 

Equation A. 17 is exactly the same as Equation A.3, except that/d is 

replaced by/d-(ix. The ambiguity function becomes 

IW*)l = (r,-T)xr^gg;yi,      forO<x<r„ (A.18-1) 

-tr.">*'^S%°'.       *»-r.<T<0. (A.18-2) 

elsewhere. (A. 18-3) 
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The ambiguity diagram is shown in Figure A.9 and contour plot is shown 

in Figure A. 10. From Figure A.2 and Figure A. 10, it can be seen that the ambiguity 

function of the LFM pulse is a rotated version of the ambiguity function of a single pulse. 

The angle of rotation depends upon the rate of frequency change fi. as shown in Figure 

A.11. 

4. Discrete Frequency modulated Pulse 

The discrete frequency modulated pulse consists of N subpulses, each at 

different discrete carrier frequency. Such a pulse can be expressed as 

St(t) = X1 u(t - nT)eJ2^+n^', (A. 19) 
n=0 

where N is the number of the discrete frequencies in the pulse, NT is the pulse width, and 

u(t) is defined as 

u(t-nT) = l, i£nT<t<(n+l)T, 
= 0, elsewhere. (A.20) 

The envelope of the transmitted signal can be written as 

U(t) = I, u(t-nT)ej2nnW. (A.21) 
n=0 
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frequency (1/pulse-width) -4    -1 
delay (pulse-width) 

Figure A.9.   Ambiguity Diagram of the LFM Pulse, Pulse Width=l. 
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-0.2 0 0.2 0.4 0.6 0.8 
delay (pulse-width) 

Figure A. 10. Contour Plot of the Ambiguity Diagram of the LFM Pulse, Pulse Width=l. 
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Figure A. 11 .The Relation of the Ambiguity Functions for the Single Pulse and LFM Pulse. 

62 



According to the definition of the ambiguity function, we obtain the 

ambiguity function of the discrete frequency modulated pulse as 

X(T,fd)=] U(t-%)U*(t)eMät& (A.22) 
—oo 

Now we define the round trip time in terms of integer and fraction parts, 

x = (p + f)T, (A.23) 
where p is an integer and y is a fraction where 0 <y< 1. We can obtain the ambiguity 

function of the discrete frequency modulated pulse after simplification. The expression of 

the ambiguity function has the form as 

X(x,fd) = {(1 -y)Txe^d~p^{1^)Txej2np^xe^^2p^)/!if)(-N~1+p)Tx 

Wd-ptfKl-DT smn(fd-(2p^)Af)T     ' + 

{yT X eMd-ip+Vty)yTx;2TI0+1)4/T X eJK(fcH2p^+i)^)(.^+P)Tx 

The ambiguity diagram is shown in Figure A. 12 and contour plot is shown 

in Figure A. 13. The discrete frequency modulated pulse is composed of the linear 

frequency modulated signal and the pulse train with 100% duty-cycle. Therefore, the 

ambiguity diagram of it has been tilted and has many discrete spikes. 
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frequency (PRF) -4    -1 
time delay (PRI) 

Figure A.12.   Ambiguity Diagram of the Discrete FM Pulse, Pulse Width=l. 
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-0.8       -0.6       -0.4       -0.2 0 0.2        0.4        0.6        0.8 
time delay(PRI) 

Figure A. 13.   Contour Plot of the Ambiguity Diagram of the Discrete FM Pulse, 
Pulse Width=l. 
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APPENDIX B.    AMBIGUITY FUNCTION PROGRAM CODES 

%filename: progLm 
%Ambiguity function of the single pulse 
%update: 27/sep/94 
%by: Huang, Jen-chin 
% 
clear; 
tau=l; 
nx=50; 
ny=101; 
t=[0:nx-l]*tau/nx; 
dt=t(2)-t(l); 
z=D; 
fd=linspace(-4/tau,4/tau,ny) 
ul=ones(l,nx); 
form=l:ny 
u2=ul.*exp(j*2*pi*fd(m)*t); 
c=xcorr(u2,ul).*dt; 
z=[z;(abs(c)).A2]; 
end 
t=[fliplr(-t),t(2:nx)]; 
flgure(l) 
mesh(t,fd,z) 
title('Ambiguity diagram of single pulse') 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
plot(t,z((ny+l)/2,:)) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(3) 
plot(fd,z(:,nx)) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 

by correlation method 

%clear all the variable 
%pulse width =1 
%# of step in delay axis 
%# of step in frequency axis 
%time axis 
%time step 

%frequency axis 
%envelope of the transmitted signal 

%ul multiply by doppler freq. shift 
%correlation of ul & u2 

%matrix of the ambiguity function 

%reconstruct the time axis 

%plot of cut along frequency axis 

%plot of cut along delay axis 

************************************************************************ 
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%filename: prog2.m 
% Ambiguity function of the linear frequency modulation (LFM) pulse 
%by coirelation method 
%update: 15/aug/94 
%by: Huang, Jen-chih 
% 

% 
clear; 
tau=l; 
mu=4; 
nx=50; 
ny=101; 
t=[0:nx-l]*tau/nx; 
dt=t(2)-t(l); 
z=Q; 
fd=linspace(-4/tau,4/tau,ny); 
form=l:ny 
ul=exp(j*pi*mu.*t*t); 
u2=conj(ul).*exp(j*2*pi*fd(m)*t); 
c=conv (u2,fliplr(u 1)). *dt; 
z=[z;(abs(c)).A2]; 
end 
% 
t=[fliplr(-t),t(2:nx)]; 
figure(l) 
mesh(t,fd,z) %mesh plot of ambiguity function 
tiüe('Ambiguity function of the single pulse') 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
contour(t,fd,z,40) %contour plot of the ambiguity function 
title('Contour plot of the signal pulse') 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse- width)') 
% 

%clear all the variables 
%pulse width=l 
%rate of frequency change 
%# of step in delay axis 
%# of step in frequency axis 
%time axis 
%time step 

%frequency axis 

%envelope of the transmitted signal 
%ul multiply Doppler frequency shift 
%correlation of ul & u2 

%matrix of the mag. square of the ambiguity function 

%reconstruct the time axis 
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%filename: prog3.m 
% Ambiguity function of the stepped frequency radar by the correlation method 
%update: 15/mar/94 
%by: Huang, Jen-chih 
% 

clear; 
tau=0.2; 
t0=0.8; 
df=0; 
% 
% 
fs=40; 
N=4; 
T=N*(tau+tO); 
sn=fs*tau; 
tn=fs*tO; 
Tn=sn+tn; 
P=[ones(l,sn),zeros(l,tn)]; 
t=linspace(0,T,N*Tn); 
nx=101; 
fd=linspace(-10,10,nx); 
dt=t(2)-t(l); 
s=D; 
m=[l,2,3,4]; 
forn=l:N 
s=[s,exp(j*2*pi*(m(n)-l)*dPt(Tn*(n-l)+l:Tn*n)).*P]; %transmitted signal 
end 

forL=l:mx 
f=fd(L); 
sl=conj(s).*exp(j*2*pi*f*t); 
s2=s; 
c=conv(s 1 ,fliplr(s2)). *dt; 
z=[z;(abs(c)).A2]; 
end 
[l,r]=size(z); 
t=[flipk(-t),t(2:N*Tn)]; 
figure(l) 
mesh(t,fd,z) 
xlabel('delay (PRI)') 
ylabel('frequency (PRF)') 

%pulse width 
%PRI-pulse-width;   PRI=1 
%step frequency 

% if df=0 then pulse radar 
%else stepped frequency radar 
% sample rate (Hz) 
%# of pulses 

%total time period for N pulses 
%# of samples in pulse width 
%# of samples between pulses 
% of samples in one PRI 
% envelope for one PRI 

%time axis for N pulses 
%# of samples in frequency axis 
%frequency axis 
%time step 

%step frequency sequence 

%transmitted signal multiply by doppler shift 
%the transmitted signal 
%correlation of si & s2 

%matrix of the ambiguity function 

%resconstruct time axis 

%mesh plot of the ambiguity function 
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figure(2) 
plot(t,z((nx+l)/2,:)) %plot of cut along time axis 
xlabelCdelay (PRI)') 
grid 
figure(3) 
plot(fd',z(:,(r+l)/2)) %plot of cut along frequency axis 
xlabel('frequency (PRF)') 
grid 
% 
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%clear all the variables 
%pulse width 
%frequency step 
%# of discrete frequencies 
% sample rate in delay axis 
%# of sample in frequency axis 
% time delay axis 

%tiume step 

%discrete frequency sequence 

%filename: prog4.m 
% Ambiguity function of the discrete frequency pulse 
%update: 18/mar/94 
%by: Huang, Jen-chih 
% 

% 

clear 
tau=l; 
df=l; 
N=4; 
sn=30; 
ny=101; 
t=[0;N*sn-l]*tau/(N*sn); 
dt=t(2)-t(l); 
s=[]; 
m=[l,2,3,4]; 
forn=l:N 
s=[s,exp(j*2*pi*(m(n)-l)*df*t(sn*(n-l)+l:sn*n))]; %envelope of the transmitted signal 
end 
z=Q; 
fd=linspace(-4/tau,4/tau,ny); 
forl=l:ny 
sl=conj(s).*exp(j*2*pi*fd(l)*t); 
s2=s; 
c=conv(sl,fliplr(s2)).*dt; 
z=[z;(abs(c)).A2]; 
end 
t=[fliplr(-t),t(2:N*sn)]; 
figure(l) 
mesh(t,fd,z) 
titleCAmbiguity function of the discrete frequency pulse') 
xlabelC time (pulse width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
contour(t,fd,z,40) %contour plot of the ambiguity function 
title('contour plot of the ambiguity function of the discrete frequency pulse') 
xlabelC time (pulse width)') 
ylabel('frequency (1/pulse-width)') 
% 

%frequency axis 

%conjugate of s times Doppler shift 

%correlation of si & s2 
%matrix of the ambiguity function 

%reconstruct the time delay axis 

%mesh plot of the ambiguity function 
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%filename: progal.m 
%ambiguity function of the single pulse by equation 
%update: 20/aug/94 
%by: Huang, Jen-chin 
% 

% 

clear; 
Ts=l; 
nx=101; 
tau=linspace(-Ts,Ts,nx); 
ny=51; 
fd=linspace(-4/Ts,4/Ts,ny); 
z=D; 
form=l:ny 
f=fd(m); 
x=[]; 
forn=l:nx 
t=tau(n); 
if t>=0 
iff*(Ts-t)==0 

x=[x,(Ts-t)]; 
else 

x=[x,(Ts-t).*(sin(pi*f*(Ts-t)))./(pi*f*(Ts-t))]; 
end 

else 
iff*(Ts+t)==0 

x=[x,(Ts+t)]; 
else 

x=[x,(Ts+t).*(sin(pi*f*(Ts+t)))./(pi*f*(Ts+t))]; 
end 

end 
end 
z=[z;x]; 
end 
z=(abs(z)).A2; 
mesh(tau,fd,z) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
contour (tau,fd, z,40) 
ifc *If *fc "Jf ^t" ^ ^'%L'^l*4'4*4*^&'^I'^*^l*4*^£* •£• *I» •ir *ir *J» ^»*J» *!/• "Jr •!/• *£» *4» «t •!"£••£• »1**1» *i» «1* *I* «I*«I»*I»«I» «l»«l««l«*I»«L.«t»«I*«I*«I* «i-«l-«L-«A. *l-»I»sI*»l*«J.»L.«l»»*.sI.«J.«I» *!• •£••£•*!• •£• •1*»T**T**T**T»*T»*T»*7»"T-»T'«T"*I*"T» *T»»T* ^^<»^»Ji«^^»^^«7»*J»«T»»T»»T»«l»»^»J5»T;»F«^»^ «^ ^^^^t»*I»<.*J»»Ji*Ji»i;fJ.»J.»I> vf. «]^ *}<•/[> tf, ?f, Jfi Jfi ifi Jfi •?• *7> «T*'P <T* *I" <t**T» *T"*T» <t* »I* 
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%filename: proga2.m 
%Ambiguity function of the linear frequency modulation pulse by equation 
% 

clear; 
Ts=l; 
mu=4; 
nx=101; 
tau=linspace(-Ts,Ts,nx); 
ny=51; 
fd=linspace(-4/Ts,4/Ts,ny); 
z=[]; 
form=l:ny 
x=[]; 
forn=l:nx 
t=tau(n); 
f=fd(m)-mu*t; 
ift>=0 
iff*(Ts-t)==0 

x=[x,(Ts-t)]; 
else 

x=[x,(Ts-t).*(sin(pi*f*(Ts-t)))./(pi*f*(Ts-t))]; 
end 

else 
iff*(Ts+t)==0 

x=[x,(Ts+t)]; 
else 

x=[x,(Ts+t).*(sin(pi*f*(Ts+t)))./(pi*f*(Ts+t))]; 
end 

end 
end 
z=[z;x]; 
end 
z=(abs(z)).A2; 
mesh(tau,fd,z) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
contour(tau,fd,z,40) 
% 
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%filename: proga3.m 
% Ambiguity function of the pulse radar by equation 
% update: 20/aug/94 
%by: Huang,Jen-chih 
clear; 
Ts=0.2; 
Tr=l; 
d=Ts/Tr; 
N=4; 
nx=161; 
tau=linspace(-N*Tr,N*Tr,nx); 
ny=61; 
fd=linspace(-10,10,ny); 
p=floor(tau/Tr); 
r=(tau/Tr)-p; 
z=G; 
form=l:ny 

x=D; 
f=fd(m); 
forn=l:nx 
t=tau(n); 
pp=p(n); 

rr=r(n); 
ifrr>=0&rr<d 
iff==0 

x=[x,(Ts-rr*Tr)*(N-abs(pp))]; 
else 

xl=(sin(pi*f*(Ts-rr*Tr)))./(pi*f*(Ts-rr*Tr)); 
ifrem(f*Tr,l)==0 

x2=N-abs(pp); 
else 

x2=(sin(pi*f*(N-abs(pp))*Tr))./(sin(pi*f*Tr)); 
end 

x=[x,(Ts-rr*Tr).*xl *x2]; 
end 

else 
if f==0 

x=[x,(Ts+(rr-1 )*Tr)*(N-abs(pp+1))]; 
else 

xl=(sin(pi*f*(Ts+(rr-l)*Tr)))./(pi*f*(Ts+(rr-l)*Tr)); 
ifrem(f*Tr,l)==0 
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x2=N-abs(pp+l); 
else 

x2=(sin(pi*f*(N-abs(pp+l))*Tr))./(sin(pi*f*Tr)); 
end 

x=[x,(Ts+(ir-l)*Tr).*xl*x2]; 
end 

else 
x=[x,0]; 

end 
end 
z=[z;x]; 
end 
z=(abs(z)).A2; 
figure(l) 
mesh(tau,fd,z) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
contour(tau,fd,z,40) 
% 
************************************************************************ 

75 



************************************************************************ 

%filename: proga4.m 
% Ambiguity function of the stepped frequency radar by equation 
% update: 20/aug/94 
%by: Huang, Jen-chin 
clear; 
Ts=0.2; 
Tr=l; 
df=2; 
d=Ts/Tr; 
N=4; 
nx=161; 
tau=linspace(-N*Tr,N*Tr,nx); 
ny=61; 
fd=linspace(-10,10,ny); 
p=floor(tau/Tr); 
r=(tau/Tr)-p; 
z=[]; 
form=l:ny 
x=[]; 
f=fd(m); 
forn=l:nx 
t=tau(n); 
pp=p(n); 
rr=r(n); 
fl=f-pp*df; 
f2=f-(2*pp+rr)*df; 
f3=f-(pp+l)*df; 
f4=f-(2*pp+rr+l)*df; 
ifrr>=0&rr<d 
iffl==0 

xl=l; 
else 

xl=(sin(pi*fl*(Ts-rr*Tr)))./(pi*fl*(Ts-rr*Tr)); 
end 
ifrem(f2*Tr,l)==0 

x2=N-abs(pp); 
else 

x2=(sin(pi*f2*(N-abs(pp))*Tr))./(sin(pi*f2*Tr)); 
end 

x=[x,(Ts-rr*Tr). *x 1 *x2]; 
elseif rr< 1 & rr>=( 1 -d) 
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if £3=0 
xl=l; 

else 
xl=(sin(pi*f3*(Ts+(ir-l)*Tr)))./(pi*£3*(Ts+(rr-l)*Tr)); 

end 
ifrem(f4*Tr,l)==0 

x2=N-abs(pp+l); 
else 

x2=(sin(pi*f4*(N-abs(pp+l))*Tr))./(sin(pi*f4*Tr)); 
end 

x=[x,(Ts+(rr-l)*Tr).*xl*x2]; 

else 
x=[x,0]; 

end 
end 
z=[z;x]; 
end 
z=(abs(z)).A2; 
figure(l) 
mesh(tau,fd,z) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
contour(tau,fd,z,40) 
% 
************************************************************************ 
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%filename: proga5.m 
% Ambiguity function of the discrete frequency modulation pulse by equation 
% update: 20/aug/94 
%by: Huang, Jen-chin 
clear; 
N=4; 
T=l/N; 
df=2; 
d=Ts/Tr; 
nx=121; 
tau=linspace(-N*Tr,N*Tr,nx); 
ny=61; 
fd=linspace(-4,4,ny); 
p=floor(tau/Tr); 
r=(tau/Tr)-p; 
z=Q; 
form=l:ny 
x=D; 
f=fd(m); 
forn=l:nx 
t=tau(n); 
pp=p(n); 
rr=r(n); 
fl=f-pp*df; 
f2=f-(2*pp+rr)*df; 
f3=f-(pp+l)*df; 
f4=f-(2*pp+rr+l)*df; 
iffl*(Ts-rr*Tr)==0 

xl=l; 
else 

xl=(sin(pi*fl*(Ts-rr*Tr)))./(pi*fl*(Ts-rr*Tr)); 
end 
ifrem(f2*Tr,l)==0 

x2=N-abs(pp); 
else 

x2=(sin(pi*f2*(N-abs(pp))*Tr))./(sin(pi*f2*Tr)); 
end 
yl=(Ts-rr*Tr).*exp(j*pi*fl*(Ts+rr*Tr)).*xl.*exp(j*2*pi*pp*df*t) 

.*exp(j*pi*f2*(N-l+pp)*Tr).*x2; 
iff3*(Ts+(rr-l)*Tr==0 
x3=l; 
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else 
x3=(sin(pi*f3*(Ts+(rr-l)*Tr)))./(pi*ß*(Ts+(rr-l)*Tr)); 

end 
ifrem(f4*Tr,l)==0 

x4=N-abs(pp+l); 
else 

x4=(sin(pi*f4*(N-abs(pp+l))*Tr))./(sin(pi*f4*Tr)); 
end 
y2=(Ts+(ir-l)*Tr).*exp(j*pi*f3*(Ts+(rr-l)*Tr)).*x3.*exp(j*2*pi*(pp+l)*df*t) 

.*exp(j*pi*f4*(N+pp)*Tr).*x4; 
x=[x,yl+y2]; 

end 
z=[z;x]; 
end 
z=(abs(z)).A2; 
figure(l) 
mesh(tau,fd,z) 
xlabel('delay (pulse-width)') 
ylabel('frequency (1/pulse-width)') 
figure(2) 
contour(tau,fd,z,40) 
% 
************************************************************************ 
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